100328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch

General Description

FAIRCHILD

SEMICONDUCTOR

The 100328 is an octal latched bi-directional translator designed to convert TTL logic levels to 100K ECL logic levels and vice versa. The direction of this translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the 100328 transparent.

The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0V, presenting a high impedance to the data bus. This high impedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.

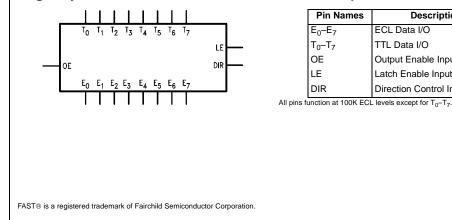
The 100328 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads. All inputs have 50 kΩ pull-down resistors.

Features

- Identical performance to the 100128 at 50% of the supply current
- Bi-directional translation
- 2000V ESD protection
- Latched outputs
- FAST TTL outputs
- 3-STATE outputs
- Voltage compensated operating range = -4.2V to -5.7V

Available to industrial grade temperature range

Ordering Code: Order Number Package Number Package Description 100328SC M24B 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide


	o (<i>)</i> , <i>i</i>
N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square

Pin Descriptions Pin Names

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

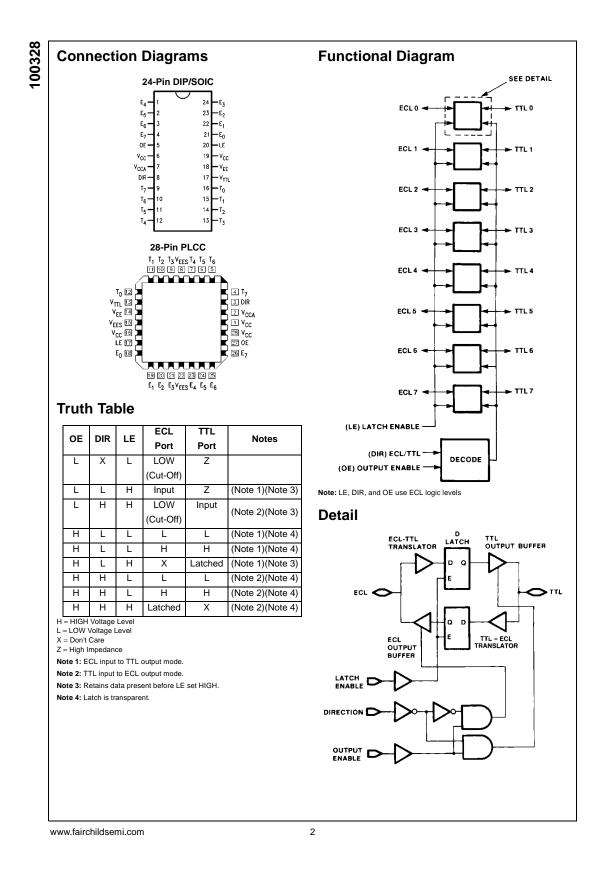
Logic Symbol

100328PC 100328QC 100328QI

© 2000 Fairchild Semiconductor Corporation DS010219 www.fairchildsemi.com

Description

ECL Data I/O


TTL Data I/O

Output Enable Input

Latch Enable Input

Direction Control Input

00328 Low Power Octal ECL/TTL Bi-Directional Translator with Latch

Absolute Maximum Ratings(Note 5)

Recommended Operating Conditions

-65°C	to +150°C	0.0
(T _J) +150°C		Cas
-7.0\	/ to +0.5V	С
n –0.5\	/ to +6.0V	Ir
V _{EI}	to +0.5V	ECI
		TTL
	–50 mA	
-0.5	/ to +6.0V	
-30 mA to	o +5.0 mA	
		Note
		the sa
-0.5	/ to +5.5V	Chara
		The "F for act
twice the rated	l I _{OL} (mA)	Note
	≥2000V	Note

Case Temperature (T_C) 0°C to +85°C Industrial -40°C to +85°C ECL Supply Voltage (V_{EE}) -5.7V to -4.2V TTL Supply Voltage (V_{TTL}) +4.5V to +5.5V

100328

Note 5: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 6: Either voltage limit or current limit is sufficient to protect inputs.
 Note 7: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

TTL-to-ECL DC Electrical Characteristics (Note 8)

 $V_{EE} = -4.2V$ to -5.7V. $V_{CC} = V_{CCA} =$ GND. $T_{C} = 0^{\circ}$ C to $+85^{\circ}$ C. $V_{TT1} = +4.5V$ to +5.5V

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	Loading with 50Ω to – 2V
	Cutoff Voltage					OE or DIR LOW,
			-2000	-1950	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$, Loading with 50 Ω to -2V
V _{OHC}	Output HIGH Voltage					
0110	Corner Point HIGH	-1035			mV	$V_{IN} = V_{IH(Min)}$ or $V_{IL(Max)}$
V _{OLC}	Output LOW Voltage			-1610	mV	Loading with 50Ω to $-2V$
	Corner Point LOW			-1010	mv	
V _{IH}	Input HIGH Voltage	2.0		5.0	V	Over V _{TTL} , V _{EE} , T _C Range
V _{IL}	Input LOW Voltage	0		0.8	V	Over V _{TTL} , V _{EE} , T _C Range
IIH	Input HIGH Current			70	μΑ	V _{IN} = +2.7V
	Breakdown Test			1.0	mA	V _{IN} = +5.5V
I _{IL}	Input LOW Current	-700			μΑ	$V_{IN} = +0.5V$
V _{FCD}	Input Clamp Diode Voltage	-1.2			V	$I_{IN} = -18 \text{ mA}$
I _{EE}	V _{EE} Supply Current					LE LOW, OE and DIR HIGH
						Inputs OPEN
		-159		-75	mA	$V_{EE} = -4.2V$ to $-4.8V$
		-169		-75		$V_{EE} = -4.2V$ to $-5.7V$

Note 8: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

100328

Commercial Version (Continued) ECL-to-TTL DC Electrical Characteristics (Note 9)

 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = GND, T_C = 0^{\circ}C \text{ to } +85^{\circ}C, C_L = 50 \text{ pF}, V_{TTL} = +4.5V \text{ to } +5.5V \text{ to }$ Symbol Parameter Min Max Units Conditions Тур Output HIGH Voltage 2.7 V_{OH} 3.1 $I_{OH} = -3 \text{ mA}, \text{ V}_{TTL} = 4.75 \text{V}$ V 2.4 2.9 $I_{OH} = -3 \text{ mA}, V_{TTL} = 4.50 \text{V}$ VOL Output LOW Voltage 0.3 0.5 V $I_{OL} = 24 \text{ mA}, V_{TTL} = 4.50 \text{V}$ Guaranteed HIGH Signal for All Inputs VIH Input HIGH Voltage -1165 -870 m٧ Input LOW Voltage -1830 -1475 Guaranteed LOW Signal for All Inputs VIL m٧ Input HIGH Current 350 μA $V_{IN} = V_{IH}$ (Max) Ι_Η Input LOW Current 0.50 $V_{IN} = V_{IL}$ (Min) μΑ $I_{|L}$ 3-STATE Current Output HIGH 70 $V_{OUT} = +2.7V$ I_{OZHT} μΑ 3-STATE Current Output LOW -700 **I**OZLT μΑ $V_{OUT} = +0.5V$ los Output Short-Circuit Current -150 -60mΑ $V_{OUT} = 0.0V, V_{TTL} = +5.5V$ 74 TTL Outputs LOW mΑ V_{TTL} Supply Current ITTL 49 mA TTL Outputs HIGH 67 mΑ TTL Outputs in 3-STATE

DIP TTL-to-ECL AC Electrical Characteristics (Note 9)

 V_{EE} = -4.2V to -5.7V, V_{TTL} = +4.5V to +5.5V, V_{CC} = V_{CCA} = GND $\bm{T_{\bm{C}}} = \bm{0}^{\circ}\bm{C}$ $T_C = 25^{\circ}C$ $T_C = 85^\circ C$ Symbol Parameter Units Conditions Min Мах Min Min Max Max t_{PLH} T_N to E_n 1.1 3.5 1.1 3.6 1.1 3.8 ns Figures 1, 2 (Transparent) t_{PHL} LE to En t_{PLH} Figures 1, 2 1.7 3.6 1.7 3.7 1.9 3.9 ns t_{PHL} OE to E_n t_{PZH} 1.3 4.2 1.5 4.4 1.7 4.8 ns Figures 1, 2 (Cutoff to HIGH) t_{PHZ} OE to E_n 15 45 16 45 16 46 Figures 1, 2 ns (HIGH to Cutoff) DIR to En t_{PHZ} 1.6 4.3 1.6 4.3 1.7 4.5 Figures 1, 2 ns (HIGH to Cutoff) T_n to LE 1.1 1.1 1.1 ns Figures 1, 2 t_{SET} T_n to LE 11 11 11 t_{HOLD} ns Figures 1, 2 Pulse Width LE 2.1 t_{PW}(H) 2.1 2.1 ns Figures 1, 2 Transition Time t_{TLH} Figures 1, 2 0.6 1.6 0.6 1.6 0.6 1.6 ns 20% to 80%, 80% to 20% t_{THL}

Note 9: The specified limits represent the "worst" case value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Commercial Version (Continued) DIP ECL-to-TTL AC Electrical Characteristics

_	
0	
ŏ	
5	
N	

Symbol	Parameter	T _C =	$\mathbf{T_C} = 0^{\circ}\mathbf{C}$		$T_C = 25^{\circ}C$		$T_C = 85^{\circ}C$		Conditions
Gymbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	E _n to T _n	2.3	5.6	2.4	5.6	2.6	5.9	ns	Figures 3, 4
t _{PHL}	(Transparent)								
t _{PLH}	LE to T _n	3.1	7.2	3.1	7.2	3.3	7.7	ns	Figures 3, 4
t _{PHL}									
t _{PZH}	OE to T _n	3.4	8.45	3.7	8.95	4.0	9.7	ns	Figures 3, 5
t _{PZL}	(Enable Time)	3.8	9.2	4.0	9.2	4.3	9.95	115	riguico o, o
t _{PHZ}	OE to T _n	3.2	8.95	3.3	8.95	3.5	9.2	ns	Figures 3, 5
t _{PLZ}	(Disable Time)	3.0	7.7	3.4	8.7	4.1	9.95	115	
t _{PHZ}	DIR to T _n	2.7	8.2	2.8	8.7	3.1	8.95	ns	Figures 3, 6
t _{PLZ}	(Disable Time)	2.8	7.45	3.1	7.95	4.0	9.2	115	
t _{SET}	E _n to LE	1.1		1.1		1.1		ns	Figures 3, 6
t _{HOLD}	E _n to LE	2.1		2.1		2.6		ns	Figures 3, 4
t _{PW} (H)	Pulse Width LE	4.1		4.1		4.1		ns	Figures 3, 7

SOIC and PLCC TTL-to-ECL AC Electrical Characteristics $\mathsf{V}_{EE} = -4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{TTL} = +4.5\mathsf{V}$ to $+5.5\mathsf{V}$ $\boldsymbol{T_C} = \boldsymbol{0}^{\circ}\boldsymbol{C}$ $T_C=25^\circ C$ $T_C = 85^{\circ}C$ Symbol Parameter Units Conditions Min Max Min Max Min Max T_n to E_n 1.1 3.3 1.1 3.4 3.6 Figures 1, 2 t_{PLH} 1.1 ns (Transparent) t_{PHL} 1.7 3.4 17 3.5 19 37 t_{PLH} LE to En ns Figures 1, 2 t_{PHL} OE to E_n 1.3 4.0 1.5 4.2 1.7 4.6 t_{PZH} ns Figures 1, 2 (Cutoff to HIGH) OE to E_n 1.5 4.3 1.6 4.3 1.6 4.4 ns Figures 1, 2 t_{PHZ} (HIGH to Cutoff) DIR to En 1.6 4.1 1.6 4.1 1.7 4.3 Figures 1, 2 ns t_{PHZ} (HIGH to Cutoff) T_n to LE 1.0 1.0 1.0 ns Figures 1, 2 t_{SET} t_{HOLD} T_n to LE 1.0 1.0 1.0 ns Figures 1, 2 Pulse Width LE 2.0 Figures 1, 2 2.0 2.0 t_{PW}(H) ns Transition Time 0.6 1.6 0.6 1.6 0.6 1.6 Figures 1, 2 ns t_{TLH} 20% to 80%, 80% to 20% t_{THL} tOSHL Maximum Skew Common Edge PLCC Only 200 200 (Note 10) Output-to-Output Variation 200 ps Data to Output Path Maximum Skew Common Edge PLCC Only t_{OSLH} Output-to-Output Variation 200 200 200 (Note 10) ps Data to Output Path Maximum Skew Opposite Edge PLCC Only t_{OST} Output-to-Output Variation 650 650 (Note 10) 650 ps Data to Output Path t_{PS} Maximum Skew PLCC Only Pin (Signal) Transition Variation 650 650 650 (Note 10) ps Data to Output Path

Note 10: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{ps} guaranteed by design.

100328

Commercial Version (Continued)

SOIC and PLCC ECL-to-TTL AC Electrical Characteristics

 $\mathsf{V}_{EE}=-4.2V$ to $-5.7V,~V_{TTL}=+4.5V$ to $+5.5V,~C_L$ = 50 pF $T_C = 0^{\circ}C$ $T_C = 25^{\circ}C$ $T_C = 85^{\circ}C$ Symbol Parameter Units Conditions Min Max Min Max Min Max t_{PLH} E_n to T_n 2.3 5.4 2.4 5.4 2.6 5.7 ns Figures 3, 4 (Transparent) t_{PHL} 7.0 t_{PLH} LE to T_n 3.1 7.0 3.1 3.3 7.5 ns Figures 3, 4 t_{PHL} OE to T_n t_{PZH} 3.4 8.25 3.7 8.75 4.0 9.5 Figures 3, 5 ns (Enable Time) 3.8 9.75 9.0 4.0 9.0 4.3 t_{PZL} OE to T_n 3.2 8.75 3.3 8.75 3.5 9.0 t_{PHZ} ns Figures 3, 5 (Disable Time) 9.75 t_{PLZ} 3.0 7.5 3.4 8.5 4.1 27 28 8 75 DIR to T_n 8.0 85 31 t_{PHZ} Figures 3, 6 ns (Disable Time) 2.8 7.25 3.1 7.75 4.0 9.0 t_{PLZ} E_n to LE 1.0 1.0 Figures 3, 4 t_{SET} 1.0 ns En to LE 2.0 2.0 2.5 ns Figures 3, 4 t_{HOLD} Pulse Width LE 4.0 40 40 Figures 3, 4 t_{PW}(H) ns PLCC Only t_{OSHL} Maximum Skew Common Edge Output-to-Output Variation 600 600 600 (Note 11) ps Data to Output Path t_{OSLH} Maximum Skew Common Edge PLCC Only Output-to-Output Variation 850 850 850 (Note 11) ps Data to Output Path Maximum Skew Opposite Edge PLCC Only t_{OST} Output-to-Output Variation 1350 1350 1350 ps (Note 11) Data to Output Path t_{PS} Maximum Skew PLCC Only Pin (Signal) Transition Variation 950 950 950 (Note 11) ps Data to Output Path

Note 11: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

PLCC TTL-to-ECL DC Electrical Characteristics (Note 12)

100328

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_C = -40^{\circ}C$ to $+85^{\circ}C$, $V_{TTL} = +4.5V$ to +5.5V

Symbol	Parameter	T _C = -	–40°C	$T_C = 0^{\circ}C$	to +85°C	Units	Conditions	
-	Farameter	Min	Max	Min	Max	Units	Conditions	
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	Loading with 50Ω to $-2V$	
	Cutoff Voltage						OE or DIR LOW,	
			-1900		-1950	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$, Loading with 50 Ω to -2V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV		
	Corner Point HIGH	-1095		-1035		mv	$V_{IN} = V_{IH(Min)}$ or $V_{IL(Max)}$	
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	Loading with 50Ω to $-2V$	
	Corner Point LOW		-1565		-1010	mv		
V _{IH}	Input HIGH Voltage	2.0	5.0	2.0	5.0	V	Over V _{TTL} , V _{EE} , T _C Range	
V _{IL}	Input LOW Voltage	0	0.8	0	0.8	V	Over V _{TTL} , V _{EE} , T _C Range	
I _{IH}	Input HIGH Current		70		70	μΑ	$V_{IN} = +2.7V$	
	Breakdown Test		1.0		1.0	mA	V _{IN} = +5.5V	
I _{IL}	Input LOW Current	-700		-700		μΑ	$V_{IN} = +0.5V$	
V _{FCD}	Input Clamp Diode Voltage	-1.2		-1.2		V	I _{IN} = -18 mA	
I _{EE}	V _{EE} Supply Current						LE LOW, OE and DIR HIGH	
							Inputs OPEN	
		-159	-70	-159	-75	mA	$V_{EE} = -4.2V$ to $-4.8V$	
		-169	-70	-169	-75		$V_{EE} = -4.2V$ to $-5.7V$	

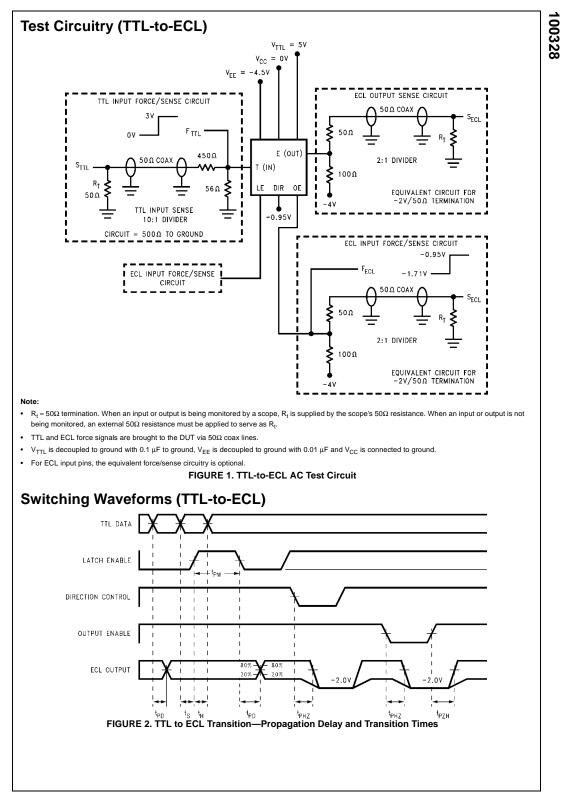
PLCC ECL-to-TTL DC Electrical Characteristics (Note 12)

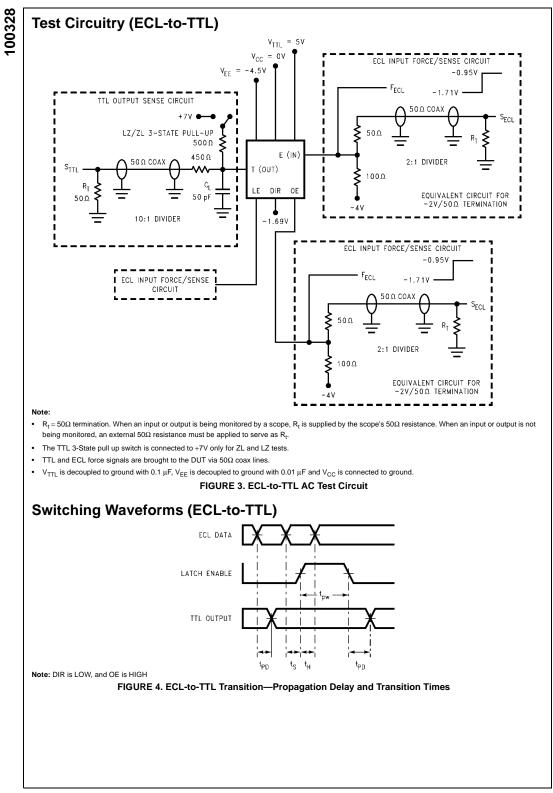
 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -40^{\circ}C$ to $+85^{\circ}C$, $C_{L} = 50$ pF, $V_{TTL} = +4.5V$ to +5.5V

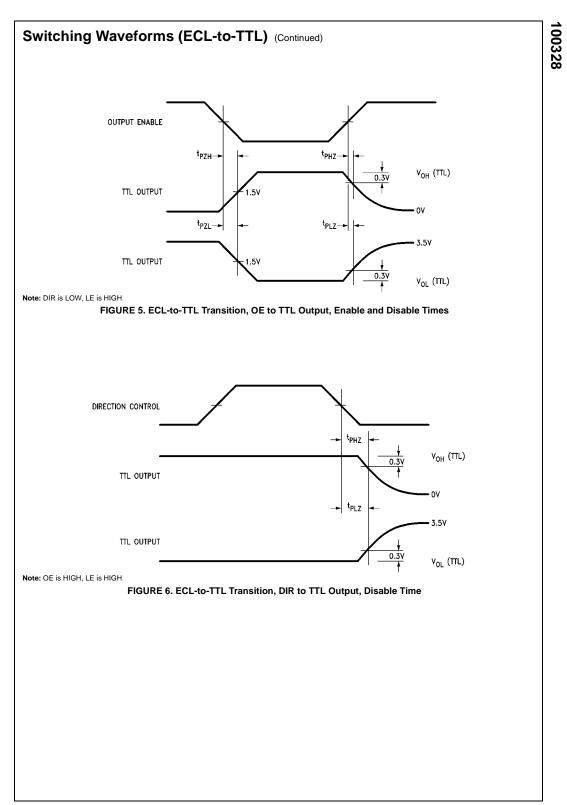
Symbol	Parameter	T _C = -	–40°C	$T_C = 0^{\circ}C$	to +85°C	Units	Conditions	
Gymbol	i arameter	Min	Max	Min	Max	Onits	Conditiona	
V _{OH}	Output HIGH Voltage	2.7		2.7		V	$I_{OH} = -3 \text{ mA}, V_{TTL} = 4.75 \text{V}$	
		2.4		2.4		v	$I_{OH} = -3 \text{ mA}, V_{TTL} = 4.50 \text{V}$	
V _{OL}	Output LOW Voltage		0.5		0.5	V	$I_{OL} = 24 \text{ mA}, V_{TTL} = 4.50 \text{V}$	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs	
VIL	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for All Inputs	
I _{IH}	Input HIGH Current		425		350	μΑ	V _{IN} = V _{IH} (Max)	
I _{IH}	Input LOW Current	0.50		0.50		μΑ	V _{IN} = V _{IH} (Min)	
I _{OZHT}	3-STATE Current Output HIGH		70		70	μΑ	$V_{OUT} = +2.7V$	
I _{OZLT}	3-STATE Current Output LOW	-700		-700		μΑ	$V_{OUT} = +0.5V$	
I _{OS}	Output Short-Circuit Current	-150	-60	-150	-60	mA	$V_{OUT} = 0.0V, V_{TTL} = +5.5V$	
ITTL	V _{TTL} Supply Current		74		74		TTL Outputs LOW	
			49		49	mA	TTL Outputs HIGH	
			67		67		TTL Outputs in 3-STATE	

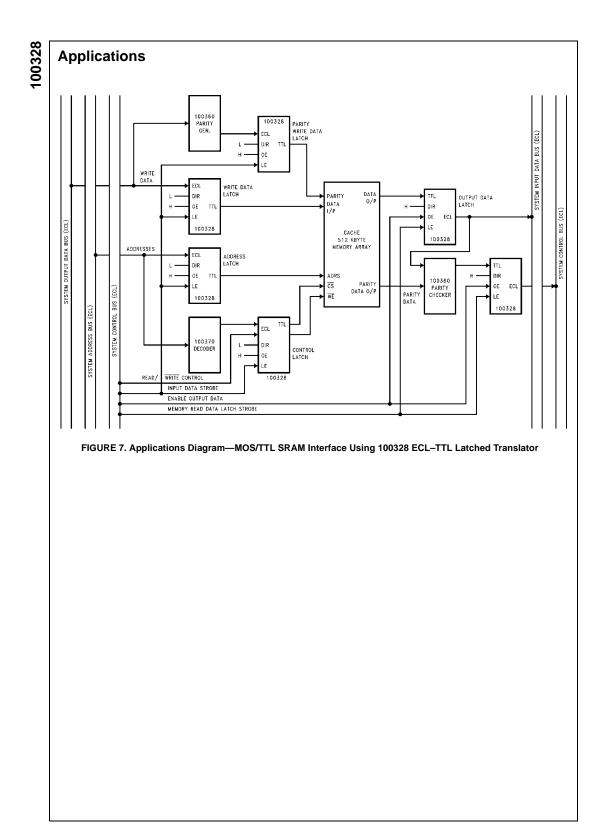
Note 12: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

100328


Industrial Version (Continued) PLCC TTL-to-ECL AC Electrical Characteristics V_{EE} = -4.2V to -5.7V, V_{TTL} = +4.5V to +5.5V


Symbol	Parameter	T _C =	–40°C	T _C =	25°C	$T_C = 85^{\circ}C$		Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	T _n to E _n (Transparent)	1.0	3.3	1.1	3.4	1.1	3.6	ns	Figures 1, 2
t _{PLH} t _{PHL}	LE to E _n	1.7	3.4	1.7	3.5	1.9	3.7	ns	Figures 1, 2
t _{PZH}	OE to E _n (Cutoff to HIGH)	1.2	4.0	1.5	4.2	1.7	4.6	ns	Figures 1, 2
t _{PHZ}	OE to E _n (HIGH to Cutoff)	1.5	4.5	1.6	4.3	1.6	4.4	ns	Figures 1, 2
t _{PHZ}	DIR to E _n (HIGH to Cutoff)	1.6	4.1	1.6	4.1	1.7	4.3	ns	Figures 1, 2
t _{SET}	T _n to LE	2.5		1.0		1.0		ns	Figures 1, 2
t _{HOLD}	T _n to LE	1.0		1.0		1.0		ns	Figures 1, 2
t _{PW} (H)	Pulse Width LE	2.5		2.0		2.0		ns	Figures 1, 2
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.4	2.3	0.6	1.6	0.6	1.6	ns	Figures 1, 2


PLCC ECL-to-TTL AC Electrical Characteristics


 $V_{EE} = -4.2V$ to -5.7V, $V_{TTL} = +4.5V$ to +5.5V, $C_{L} = 50$ pF

Symbol	Parameter	T _C =	= 0°C	$T_C = 25^{\circ}C$		$T_C = 85^{\circ}C$		Units	Conditions
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	E _n to T _n	2.3	5.4	2.4	5.4	2.6	5.7	ns	Figures 3, 4
t _{PHL}	(Transparent)	2.3	5.4	2.4	5.4	2.0	5.7	115	Figures 3, 4
t _{PLH}	LE to T _n	3.1	7.4	3.1	7.0	3.3	7.5	ns	Figures 3, 4
t _{PHL}		5.1	7.4	3.1	7.0	3.3	7.5		Figures 5, 4
t _{PZH}	OE to T _n	3.4	8.3	3.7	8.75	4.0	9.5	ns	Figures 3, 5
t _{PZL}	(Enable Time)	3.7	9.0	4.0	9.0	4.3	9.75		
t _{PHZ}	OE to T _n	3.2	9.0	3.3	8.75	3.5	9.0	ns	Figures 3, 5
t _{PLZ}	(Disable Time)	3.0	7.5	3.4	8.5	4.1	9.75	115	
t _{PHZ}	DIR to T _n	2.7	8.0	2.8	8.5	3.1	8.75	ns	Figuroo 2 F
t _{PLZ}	(Disable Time)	2.8	7.3	3.1	7.75	4.0	9.0	115	Figures 3, 5
t _{SET}	E _n to LE	2.5		1.0		1.0		ns	Figures 3, 4
t _{HOLD}	E _n to LE	2.3		2.0		2.5		ns	Figures 3, 4
t _{PW} (H)	Pulse Width LE	4.0		4.0		4.0		ns	Figures 3, 4

